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ABSTRACT
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The general problem of calculating expectation values for

properties other than energy by the use of perturbation theory

is considered.
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It is well known that perturbation theor:y1 can be used in the
quantum mechanical determination of an expectation value W) =(‘Y|W|Y)
of an operator W. Here 11’ is an eigenfunction of the Hamiltonian H.
Usually we do not know ¥ . Instead we are given an approximate
wave function ‘l{, which satisfies the Schrgdinger equation
HO ‘VO = €O \VO . The difference H - HO =V 1is the perturbation
and \If can be expanded in the series 11, = \I/O + \lfo(l) + ... .

Here '\‘/0(1) is the first order function which is orthogonal to \VO

and satisfies the differential equation

(Ho €)Y, # (V=< VI¥D)Y =0 . 1)

The expectation value can then be expressed as the sum of the
contributions from the various orders of perturbation, <W> = WO + W1+

Here WO = (\VO ] w ‘1'/0> and Wl represents the first correction

for the badness of the approximate wave function,
1)) n
w, = CET WD) + CEIWITETD 2)

If W 1is a one-electron operator, it is usually much easier to use

the Dalgarno Interchange Theoreml and express Wl in the mathematically

equivalent form
W, = <X IV £ E v S

where xo(l) would be the first order function if W rather than V



were the perturbation potential,

(Ho—éo)x:n + (W-’("Vo ]W‘%>)% =0 . (%)

Dalgarno and Lew152 suggested that ‘)Lo(l) be written as the product

F 'V/O where F is a function which satisfies the equation
*
V(YY) = YW -WD Y s Y WE-WORT L s
{

Here the summation is over the electrons. For one-electron W's ,
Eq. (5) is frequently separable and F can either be determined
exactly or else it can be satisfactorily approximated.

Largely on the basis of intuitive arguments, Dalgarno and

Stewart3 suggested that W, should be a good approximation to (W)

0
provided that a parameter embedded in \P’O is adjusted so as to
make W1 = 0 . A sizeable number of expectation values have been
. . . . 4,5
estimated in this manner and fcund to be surprisingly accurate.
For the ground state of two electron atoms using hydrogenic
approximate wave functions5 and positive definite one-electron
operators W, the value of Wo + W1 is a lower bound to {w)

and the maximum value of W0 + W1 is obtained by setting W1 =0 .
However, this behaviour is not general as can be seen from the
following examples:
Calculate {r) for the ground state of the hydrogen atom.
%
First, using the approximate wave function ‘ﬂfo =Nr°exp(-«r),

we obtain  {r) ,=2/& and <r) = (9/8« 2y [ - (32/21] .

Setting O = 32/27 to make (f)l = 0 makes (r)o = 54/32 which is



larger than the correct value £ r) = 48/32. Furthermore, the
maximum value of <r> 0 + <r > ; occurs for X = 64/75 and not
X = 32/27. Similarly, using \K= NTYexp (-XT ) we obtain
<r)1 =0 for X =5/4 , in which case <r)0 = 2 . Furthermore,
for the ground state of the helium atom, the orbital \K= NY exp(-&T)
leads to <r1> 1 = 0 for & = 1.9775 and correspondingly
<r1> 0o = 1.2642, which is to be compared with the exact wvalue
0.9293.

Recently, Robinson6 has shown that the requirement that Wl =0

is equivalent to satisfying the hypervirial relation

Y \H, LY, >=0 , )
where L 1is an anti-Hermitian operator satisfying the condition

X, =F¥=L% . (M

There is no uniqueness in the functional form of L . It might be

assumed to be a first order differential operator,

‘F ‘/1 a i ‘z
Lz:/:‘ —5:_ 5—;‘:(%&&/ ), 8)

where g is the product of the metric scale factors of the
generalized coordinates 9 and the functions fk may be functions

of all of the With this form of L, the hypervirial

qk'

relation Eq. (6) becomes5



oV

<%\{-‘cx5€“‘%>=0 : )

For a one-dimensional problem, by virtue of Eq. (7), the function f

is simply relateds to the Dalgarno function F,

2 LI
f= ‘{/*'{/ S %u{ F\KJ% . (10)
@5h T c

Thus, it is not difficult to obtain the required hypervirial
operator L associated with a property W .

As Epstein and Hirschfelder7 showed, the satisfaction of the
hypervirial relation Eq. (6) assures that the wave function WO

is ehergeticdlly stable with respect to variations of the type

Y - = Y ALY, =Y +AFY (11)
Thus, if WO satisfies Eg. (6), then the lowest value of

E(A) =<¢(A)‘H‘¢(R)>/<¢(A”Cb(l)> (12)

is given by A=0. Conversely, if WO does not satisfy Eq. (6),
then the function 4’ with the energy optimized value of A will
satisfy the hypervirial relation. Hence <4> jwl &> should give
the best approximation to {wD when A is energy optimized.
I1f it is difficult to determine the function F corresponding

to an approximate wave function “"{, , perhaps one might not make



a large error in using a function FO which would be appropriate

’
for a simpler function "VO . That is, approximate W1 by

LY, lF, @ -vy) + =V O F | WD where vy =CY VY ).
The function F changes only slightly as cone goes from a crude

approximate wave function toc the exact function. For example,

using the correct ground state functlon for the hydrogen atom,

“'V Ne , we find (“"’ -t‘)/zn’ for W=r . On the
other hand, for the function ‘V, = Nr"‘e s F’-'—(‘Ez,“z)/za' s
and for ‘Vo = Nre"” , F= (‘5/2¢z—r")/24 . In the latter

two cases, the value of W1 is unchanged if FO‘ is used instead

of the correct F, that is (% ‘(V“Voo)Fo \Vo) =
<%‘(V"Vo¢)\=\%> . Thus using FO in place of F 1leads
to the same optimum value for O and (r)o .
A rougher approximation to F might be obtained in the
following manner. As Lennard-Jones observed8’1 ; a first order

perturbed wave function may be expressed in the spectral form

wW- w°
€, -

FY = -

(13)

€ -6\ <Y IWIE )V
(E —& ) (61"’60) )

Here the "Vj and the ej are the complete set of eigenfunctions

and eigenvalues of H The state '"1' may be chosen so as to

0 "

. \ .9
make the summation as small as possible. Neglecting the summation”,

—(W-W,)/(€,-E,) . (14)




To this approximation, 45 ( A ) might be replaced by

(X)) = (\+ ):W)% ] (15)

This is the basis for the well known Hylleraaslo or Hasse
approximation which leads to good values for the polarizability of
molecules.12 Thus, < w2 might be approximated by <¢' |W|¢'>
where the value of A’ is adjusted so as to minimize the expectation

value of H .
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